Just A Moment
$sin^3x+cos^3x=1\(sin x+cos x)(sin^2x-sin xcdotcos x+cos^2x)=1\(sin x+cos x)(1-sin xcdotcos x)=1$
What should I do next?
Bạn đang xem: Just a moment



Both of $sin(x),cos(x)$ must be nonnegative since, if one of them was negative, the equation $sin^3(x)+cos^3(x)=1$ would imply that the other one is more than $1$, contradiction.Thus, we have $0le sin(x) le 1$ & $0le cos(x)le 1$.If both of $sin(x),cos(x)$ are less than $1$, then, since they are both nonnegative, we would have $$egincases0le sin^3(x) but that would imply$$sin^3(x)+cos^3(x) contradiction.It follows that one of $sin(x),cos(x)$ must be equal khổng lồ $1$, và the other must be equal to lớn zero.From that information, I"m sure you can finish the solution.

Xem thêm: Trình Bày Đặc Điểm Cấu Tạo Ngoài Của Thằn Lằn, Thích Nghi Với Đời Sống Hoàn Toàn Ở Cạn
Hint:
Let $sin x+cos x=timplies t^2=?$
$$1=dfract2-(t^2-1)2iff t^3-3t+2=0$$
Clearly, $t=1$ a solution

Let use by $t= an (x/2)$
$sin x=frac2t1+t^2$
$cos x=frac1-t^21+t^2$
to obtain
$$2t^6-8t^3+6t^2=0$$
$$iff t^2(t^4-4t+3)=t^2(t-1)^2(t^2+2t+3)=0$$
and since $t^2+2t+3>0$ the solutions are
$t=0 implies frac x 2=kpiimplies x=2kpi$
$t=1 implies frac x 2=fracpi4+kpi implies x=fracpi2+2kpi $
As an alternative by
$$sin^3 x+ cos ^3 x=1 iff sin xcdot sin^2+cos xcdot cos^2 x=1$$
since $sin^2 x+ cos ^2 x=1$, the given equality is a weighted mean of $sin x$ & $cos x$ which holds if và only if
$sin x=1,,cos x=0$or
$cos x=1,,sin x=0$Xem thêm: Mục Đích Của Việc Sử Dụng Biểu Đồ Là Gì? Các Loại Biểu Đồ
Site thiết kế / logo © 2022 Stack Exchange Inc; user contributions licensed under CC BY-SA. Rev2022.12.19.43125
Your privacy
By clicking “Accept all cookies”, you agree Stack Exchange can store cookies on your device and disclose information in accordance with our Cookie Policy.