SOLVE SINA=SINB

     

Sin A - Sin B is an important trigonometric identity in trigonometry. It is used to lớn find the difference of values of sine function for angles A và B. It is one of the difference to hàng hóa formulas used khổng lồ represent the difference of sine function for angles A & B into their sản phẩm form. The result for Sin A - Sin B is given as 2 cos ½ (A + B) sin ½ (A - B).

Bạn đang xem: Solve sina=sinb

Let us understand the Sin A - Sin B formula and its proof in detail using solved examples.

1.What is Sin A - Sin B Identity in Trigonometry?
2.Sin A - Sin B Difference to product Formula
3.Proof of Sin A - Sin B Formula
4.How lớn Apply Sin A - Sin B?
5.FAQs on Sin A - Sin B

The trigonometric identity Sin A - Sin B is used to represent the difference of sine of angles A and B, Sin A - Sin B in the product size with the help of the compound angles (A + B) & (A - B). Let us study the Sin A - Sin B formula in detail in the following sections.


The Sin A - Sin B difference to product formula in trigonometry for angles A and B is given as,

Sin A - Sin B = 2 cos ½ (A + B) sin ½ (A - B)

Here, A and B are angles, and (A + B) and (A - B) are their compound angles.

*


We can give the proof of Sin A - Sin B formula using the expansion of sin(A + B) & sin(A - B) formula. As we stated in the previous section, we write Sin A - Sin B = 2 cos ½ (A + B) sin ½ (A - B).

Xem thêm: Tóm Tắt Vụ Án Lệ Chi Viên Và Sự Ly Tán Của Gia Đình, Họ Tộc Nguyễn Trãi

Let us assume two compound angles A và B, given as A = X + Y và B = X - Y,

⇒ Solving, we get,

X = (A + B)/2 and Y = (A - B)/2

We know, sin(X + Y) = sin X cos Y + sin Y cos X

sin(X - Y) = sin X cos Y - sin Y cos X

sin(X + Y) - sin(X - Y) = 2 sin Y cos X

⇒ sin A - sin B = 2 sin ½ (A - B) cos ½ (A + B)

⇒ sin A - sin B = 2 cos ½ (A + B) sin ½ (A - B)

Hence, proved.


Sin A - Sin B trigonometric formula can be applied as a difference khổng lồ the product identity khổng lồ make the calculations easier when it is difficult to calculate the sine of the given angles. Let us understand its application using an example of sin 60º - sin 30º. We will solve the value of the given expression by 2 methods, using the formula & by directly applying the values, and compare the results. Have a look at the below-given steps.

Compare the angles A & B with the given expression, sin 60º - sin 30º. Here, A = 60º, B = 30º.Solving using the expansion of the formula Sin A - Sin B, given as, Sin A - Sin B = 2 cos ½ (A + B) sin ½ (A - B), we get,Sin 60º - Sin 30º = 2 cos ½ (60º + 30º) sin ½ (60º - 30º) = 2 cos 45º sin 15º = 2 (1/√2) ((√3 - 1)/2√2) = (√3 - 1)/2.Also, we know that Sin 60º - Sin 30º = (√3/2 - 1/2) = (√3 - 1)/2.

Hence, the result is verified.

Topics Related khổng lồ Sin A - Sin B:


Example 1: Find the value of sin 145º - sin 35º using sin A + sin B identity.

Solution:

We know, Sin A - Sin B = 2 cos ½ (A + B) sin ½ (A - B)

Here, A = 145º, B = 35º

sin 145º - sin 35º = 2 cos ½ (145º + 35º) sin ½ (65º - 35º)

= 2 cos 90º cos 15º

= 0 < cos 90º = 0>


Example 3: Solve the given expression, (sin x - sin 5x)/(sin x + sin 5x).

Solution:

We have,

(sin x - sin 5x)/(sin x + sin 5x) = <2 cos ½ (x + 5x) sin ½ (x - 5x)>/<2 sin ½ (x + 5x) cos ½ (x - 5x)>

= /

= -cos 3x sin 2x/sin 3x cos 2x

= - rã 2x cot 3x


Example 4: Verify the given expression using expansion of Sin A - Sin B: sin 70º - cos 70º = √2 sin 25º

Solution:

We have, L.H.S. = sin 70º - cos 70º

Since, cos 70º = cos(90º - 20º) = sin 20º

⇒ sin 70º - cos 70º = sin 70º - sin 20º

Using Sin A - Sin B = 2 cos ½ (A + B) sin ½ (A - B)

⇒ sin 70º - sin 20º = 2 cos ½ (70º + 20º) sin ½ (70º - 20º)

= 2 cos 45º sin 25º

= √2 sin 25º

= R.H.S.

Hence, verified.


View More >

go lớn slidego lớn slidego to lớn slidego lớn slide



Breakdown tough concepts through simple visuals.

Xem thêm: Học Từ Vựng Theo Chủ Đề Từ Bài Mẫu Ielts Speaking Part 2 + 3


Math will no longer be a tough subject, especially when you understand the concepts through visualizations.